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Abstract

The relaxation of the anisotropy of impurity ions in an

anisotropic plasma is discussed., The treatment is based

on the assumption that all velocity distribution functions are
elliptic initially and remain elliptic during the relaxation
process. The problem thus reduces to a set of ordinary differential
equations for the perpendicular and parallel temperatures of the
different kinds of plasma particles. One may hope that such an
approximate description of the relaxation is of some help in the
interpretation of experimental results, as obtained by, for in-
stance, Bogen et al Pq.

Some examples are treated numerically.




1) Introduction

The plasmas produced by fast theta-pinches, for instance, are
strongly anisotropic. Possibilities of directly measuring the
plasma anisotropy (more precisely: the anisotropy of the deuter-
ons; the electrons can be assumed to be isotropic in good
approximation) by making use of the neutrons emitted from the
pinched plasma have been discussed both theoretically [ﬂ]and
experimentally [?.j] . Bogen, Rusbiildt, and Schliiter [{]have
recently used another method. The plasma contains some high-2
impurities or, if it should be very pure, a controlled amount

of such impurities may be added. One can then measure the Dopp-
ler width of their spectral lines as seen from different direc-
tions, say, parallel and perpendicular to the axis of the magne-
tic field. Bogen, Rusbiildt, and Schlliter have done this for CV,
NVI, and OVII lines. One then faces the problem of finding how
the anisotropies of different kinds of particles in the plasma
are connected with one another, i.e. how the anisotropies re-

lax owing to collisions between all kinds of particles existing
in the plasma. A precise treatment of the problem would require

a numerical solution of the kinetic equation of the plasma, which
in turn has to be based on a sufficiently precise knowledge of
the initial conditions that have to be obtained from the experi-
ment. This information is not available, however. It thus seems
more promising to make simplifying assumptions which are adapted
to the experimental knowledge obtainable by present "diagnostic!
techniques. These yield, for instance, some mean values of the
particle energies (these particles being the deuterons in the
case of neutron measurements, the heavy ions in the case of spec=:
troscopic measurements) for the direction of observation. The
resolution is not sufficient, however, for supplying detailed
information on the velocity distribution itself. In view of this
situation, it is useless to calculate more than the time be-
haviour of mean energies. The most natural assumption then is to
take initially elliptic velocity distributions which are supposed
to remain so during the relaxation process. In this approximation
each kind of particles is described by two "temperatures'", a
perpendicular one and a parallel one (with reference to the direc-




tion of the magnetic field). This is due to the tacit assumption
of rotational symmetry (in the general case one would have three
"temperatures"). The assumption of elliptic distributions is also
very natural in the sense that it allows the description of the
transition to thermodynamic equilibrium, which is a basic re-
quirement for the choice of the functional form of the velocity
distribution. The problem has been discussed on these assumptions
in previous papers, first with the help of the Fokker-Planck
equation [5] and then with the help of the Balescu-Lenard equa-
tion [6]. The latter treatment shows that (except for extreme
parameters) the inclusion of collective effects (by taking the
Balescu-Lenard equation) is not necessary. This had to be expec-
ted and thus the situation is the same as in the small aniso-
tropy case, which has been treated by Wu et al [ﬂ .

2) Eguations

In references [5,6] the problem has been discussed for singly
charged ions and electrons. By introducing the ionic charge Z
the results can easily be generalized. We use equations (34) to
(39) of reference [é], which (taking into account m kinds of
particles denoted by subscripts i, k running from 1 to m) may
be written as follows:
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71 is the mean temperature (proportional to the energy) of kind
i particles:
e &yt
T = (11)
In writing down equations (1) and (2) we have chosen 1; and
T,;~Ty, as our variables, (instead of “T,; and Ta; ).
Equation (1) thus describes the energy exchange between different

kinds of particles, while equation (2) describes the relaxation
of anisotropy. Let us note that

T = - e (e




i.e. the'j;h are antisymmetric with respect to their indices,
this being a consequence of energy conservation. On the other
hand, there is no such relation for the V(;&

The other quantities used in the equations are:
N, particle density
’Tli perpendicular temperature
Vﬂlb parallel temperature
» charge of particles (in units of e)
€ elementary charge
“m

. particle mass

ﬁh_A. Coulomb logarithm

3) Discussion of the equations

In certain cases the equations may be simplified. The time
scales for different kinds of particles depend on their masses.
Due to their small mass electrons relax faster than ions do.
Thus the electrons may be considered as isotropic at least as
far as ionic time scales are concerned. If the index e denotes

electrons and i same kind of ions, we have in this case
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i.e. if the ratio of ion temperature and electron temperature is
not extremely large. So one may expand 7#, equation (9), and ob-

tain linearised results even for large ion anisotropy:
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This is a consistent set of equations. To avoid confusion let us,
however, add the following remark. If one kind of particles is
isotropic while the otherkinds are not, the anisotropic kinds
produce an anisotropy of the initially isotropic kind also. So
even for 1sotropic electrons b<ei=kC) if the ions are anisotropic.
The point is that Kei is of the order %% and can be neglected
in the above set of equations. Let us consider a plasma composed
of electrons and one kind of ions only. It can then be shown that
an anisotropy Tll—_ﬂ”, of the ions produces the following aniso-

tropy of the electrons:
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On expanding one now obtains equations (16) and (18) as given above.

The factor o< cancels and does not appear in -jét and VQ:.-

It does, however, show up in the expression for P(ei :
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We can linearise equation (5) fbr electrons if they are nearly

isotropic also:
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This shows that the Ansatz (19) is Jjustified and gives equation
(20) for A . We see that the electrons are slightly anisotropic
as long as the ions are. Because L(Qifv'zgﬁwkcthis anisotropy is
negligibly small, however.

If the electrons interact with several kinds of particles, the

equations Jjust given can easily be generalized:
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Our treatment does not include magnetic field effects, but these
may become important in the form of micro-instabilities, for
example. In applying the Balescu-Lenard equation one supposes
that the velocity distributions referred to are microstable. If
this is not the case(and the magnetic field may in many cases
produce microinstabllities of various types such as, for in-
stance, mirror instabilities, firehose instabilities, loss cone
instablilities etc.) the Balescu-Lenard equation breaks down

and neglecting collective effects, i.e, the Fokker-Planck treat-

ment of the problem, is no longer Jjustified.

If no instability is involved the magnetic field effects can
be included. The heating produced by a magnetic field varying




with time can be described by an adiabatic heating term
AT, T d8
dt 0 2R dt (28)

as has been done in previous applications [5,4]. We are assuming
throughout that the plasma is homogeneous and also imbedded in
a homogeneous magnetic field. This means that our equations re-

fer to suitably chosen spatial mean values.

For very high magnetic fields it may become necessary to use

in the Coulomb logarithm the mean values of Larmor radii which
replace the Debye length if they become smaller than the Debye
length. Since only the logarithm is concerned, however, this is

not a very important correction.

To describe the problem completely, we should have to include
more equations describing the processes of ilonization and re-
combination and the energy transfer between different kinds of
ions due to these processes. Consider for instance, a plasma
with deuterons, electrons, and carbon impurities. One may then
have several heavy ions at the same time, say, CIV, CV, CVI.
Owing to recombination and ionization processes a given particle
does not always belong to the same kind of ions and it carries
its energy from kind to kind. In principle, this processes can
be taken into account. This will not be done in the present re-

port, however.

To compute the relaxation one needs in principle at least the
densities of all kinds of particles. Experimentally, the den-
sities of impurity ions are not very well known, or not known

at all. It is not necessary to know these densities if they are
sufficiently small. In this case the relaxation is due to colli-
sions with electrons and deuterons while heavy ion - heavy ion
collisions can be neglected, and so the heavy ion densities do
not enter because corresponding terms in equations (1) and (2)
are small. One has to be careful, however, because owing to the
factor 22 these terms may become important even for relatively

low impurity concentrations.




4) Numerical examples

Let us now give some numerical solutions of the equations dis-

cussed.

In Figure 1 we consider a plasma containing electrons, deuterons,

and CV-ions. Initial temperatures are lio= lide = licy, = 300 eV= To
and 77{0 = Tllalo = e T li co = 100e V.

The particle densities of electrons and deuterons are equal,
Me = N = /(o"? while: Meg = O .

The electrons relax very fast, i.e. within a time during which
deuterons and CV-ions are essentially unaffected. If, for com-
parison, the electrons are treated as isotropic from the be-
ginning, the behaviour of deuterons and CV-ions is not changed.
The anisotropy of the ions relaxes somewhat faster than that
of the deuterons. This is due to the factor 2

cY
compensates the factor 6 in the masses. A change in the particle

= 16 which over-

density changes the time scale by the same factor. The Coulomb
logarithm has been replaced by 10 in all cases.

Figures 2 to 4 describe the behaviour of a similar plasma. The
difference is that the electrons are isotropic and their initial
temperature is 100 eV. The CV-ions are anisotropic (initial per-
pendicular and parallel temperatures are 9oo eV and 100 eV resp.).
The deuterons are also anisotropic. Their initial parallel tem-
perature is 100 eV, while the initial perpendicular temperature
takes different values, viz. 300, 600, and 9oo eV. Particle den-
sities are as before in the Figure 1 case.

For reasons which will become clear later the computation starts
at 0.2 pusec as initial time. Figures 2 to 4 show that the CV-ions
relax faster than the deuterons. Even if the 1nitial anisotropy
of the CV-ions is larger than that of the deuterons initially it
becomes smaller after a short time.




Figures 5 to 7 refer to the same parameters as Figures 2 to 4, the
only difference being the addition of an adiabatic heating term
(magnetic field). The data are chosen so as to correspond to the
case of reference @], except for the initial temperature of the
deuterons, which is not given in reference [ﬂ since it could not
be measured. We have again, as above, considered 100 eV parallel
and 300, 600, 900 eV perpendicular temperature. The reason for
this choice is as follows. The theta-pinch compression may roughly
be divided into two stages. The first stage consists of a rapid
radial contraction in which the heating of the plasma 1s mainly
due to a shock wave. The second stage may be described as adiabatic
heating due to the increasing magnetic field. Thus the initial
conditions for the adiabatic heating are determined by the pre-
ceding shock wave. The shock wave mainly heats particles with
higher mass. If there were no competing processes the perpen-
dicular temperatures reached would be proportional to the masses.
This, however, is not to be expected. The electrons are mainly
heated by collisions ( Joule heating ). Furthermore, the two
stages, the dynamic one and the adiabatic one, overlap in a
complicated way. In any case one would expect, however, that at
some early time the CV ions should be essentially hotter than

the deuterons (we are referring to perpendicular temperatures
only). Thus we considered the perpendicular temperature of the
deuterons as a parameter which we varied as mentioned above.

On the other hand, the computations show that the CV-ions relax
so fast that they cool down below the deuterons within a short
time. The measurements of Bogen et al [ﬁ] start at o.2 psec.

Our computation starts at the same time taking their data as
initial values. One could imagine that due to the relaxation at
earlier times drlcf' is already smaller than [ o at 0.2 psec.
Such an assumption would not fit with the measurements, however.
An initial value T&L (0.2 psec) = 9o0 eV gives —Ea1:(0.7 usec)
~ 1.4 keV, a value much too high in comparison with the measured
value of about 500 eV (from the neutron output). This latveh
value is compatible only with a relatively small initial deuteron

temperature of about 400 eV. The magnetic field is also plotted




for comparison. If there were no relaxation all perpendicular

temperatures would follow the magnetic field.

5) Conclusion

The measurement of the anisotropy of a plasma via the aniso-
tropy of impurities as introduced by Bogen et al. [4] can yield
very valuable information. In using this method one should be
very careful with the interpretation, however. There is no Jjusti-
fication,at least in general, in identifying the anisotropy of
the impurities with that of the deuterons. Different kinds of
particles relax in a different way. So in drawing conclusions
the measurements should be supported by computations. The

theory given in the present report is still oversimplified, but
we may hope that it describes the relaxation sufficiently well
to be of some help in the interpretation of experimental results.
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Comparison of the relaxation rates for electrons,

deuterons, and CV-ions. ne =n, = 1017 s n = 0
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Relaxation of deuterons and CV-ions.
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Electrons isotropic. T ng; = 10 3 IlCV" 0
Initial conditions at t = 0,2 usec:
T ovo= 900 eV s TNCVo = 100 eV; T = LTeo ™ QIeo =
100 eV
'I‘“do = 100 eV ; Tldo = 300 eV
Same as Figure 2 with oo™ 600 eV
Same as Figure 2 with Tldo = 900 EV

Same as Figure 2, but including adiabatic heating

due to a magnetic field ( B~ sin 2@t ; T/4 = 0,7 psec)
T

Same as Figure 5 with ?Ldo = 600 eV

Same as Figure 5 with Tido = 900 eV
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